Multiple attractors, saddles, and population dynamics in periodic habitats.

نویسندگان

  • S M Henson
  • R F Costantino
  • J M Cushing
  • B Dennis
  • R A Desharnais
چکیده

Mathematical models predict that a population which oscillates in the absence of time-dependent factors can develop multiple attracting final states in the advent of periodic forcing. A periodically-forced, stage-structured mathematical model predicted the transient and asymptotic behaviors of Tribolium (flour beetle) populations cultured in periodic habitats of fluctuating flour volume. Predictions included multiple (2-cycle) attractors, resonance and attenuation phenomena, and saddle influences. Stochasticity, combined with the deterministic effects of an unstable 'saddle cycle' separating the two stable cycles, is used to explain the observed transients and final states of the experimental cultures. In experimental regimes containing multiple attractors, the presence of unstable invariant sets, as well as stochasticity and the nature, location, and size of basins of attraction, are all central to the interpretation of data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cycling chaotic attractors in two models for dynamics with invariant subspaces.

Nonergodic attractors can robustly appear in symmetric systems as structurally stable cycles between saddle-type invariant sets. These saddles may be chaotic giving rise to "cycling chaos." The robustness of such attractors appears by virtue of the fact that the connections are robust within some invariant subspace. We consider two previously studied examples and examine these in detail for a n...

متن کامل

Periodic dynamical systems in unidirectional metapopulation models

In periodically varying environments, population models generate periodic dynamical systems. To understand the effects of unidirectional dispersal on local patch dynamics in fluctuating environments, dynamical systems theory is used to study the resulting periodic dynamical systems. In particular, a unidirectional dispersal linked two patch nonautonomous metapopulation model is constructed and ...

متن کامل

Continued Fractions Hierarchy of Rotation Numbers in Planar Dynamics

Global bifurcations such as crises of attractors, explosions of chaotic saddles, and metamorphoses of basin boundaries play a crucial role in understanding the dynamical evolution of physical systems. Global bifurcations in dissipative planar maps are typically caused by collisions of invariant manifolds of periodic orbits, whose dynamical behaviors are described by rotation numbers. We show th...

متن کامل

Hidden transient chaotic attractors of Rabinovich-Fabrikant system

In [1], it is shown that the Rabinovich-Fabrikant (RF) system admits self-excited and hidden chaotic attractors. In this paper, we further show that the RF system also admits a pair of symmetric transient hidden chaotic attractors. We reveal more extremely rich dynamics of this system, such as a new kind of “virtual saddles”.

متن کامل

Controlled generation of switching dynamics among metastable states in pulse-coupled oscillator networks.

Switching dynamics among saddles in a network of nonlinear oscillators can be exploited for information encoding and processing (hence computing), but stable attractors in the system can terminate the switching behavior. An effective control strategy is presented to sustain switching dynamics in networks of pulse-coupled oscillators. The support for the switching behavior is a set of saddles, o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 61 6  شماره 

صفحات  -

تاریخ انتشار 1999